f04 — Simultaneous Linear Equations f04bfc

NAG C Library Function Document

nag real sym posdef band lin_solve (f04bfc)

1 Purpose

nag_real sym posdef band lin_solve (f04bfc) computes the solution to a real system of linear equations
AX = B, where A4 is an n by n symmetric positive-definite band matrix of band width 2k + 1, and X and B
are n by r matrices. An estimate of the condition number of 4 and an error bound for the computed
solution are also returned.

2 Specification

#include <nag.h>
#include <nagf04.h>

void nag_real_sym_posdef_band_lin_solve (Nag_OrderType order, Nag_UploType uplo,
Integer n, Integer kd, Integer nrhs, double ab[], Integer pdab, double b[],
Integer pdb, double *rcond, double *errbnd, NagError xfail)

3 Description

The Cholesky factorization is used to factor 4 as 4 = U U, if uplo = Nag_Upper, or A = LL", if
uplo = Nag_Lower, where U is an upper triangular band matrix with k& superdiagonals, and L is a lower
triangular band matrix with & subdiagonals. The factored form of 4 is then used to solve the system of
equations AX = B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia URL: http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments
1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input
On entry: if uplo = Nag_Upper, the upper triangle of the matrix A4 is stored.
If uplo = Nag_Lower, the lower triangle of the matrix 4 is stored.

Constraint. uplo = Nag Upper or Nag Lower.

3: n — Integer Input
On entry: the number of linear equations 7, i.e., the order of the matrix A.

Constraint: n > 0.

[NP3660/8] f0dbfe. 1

f04bfc NAG C Library Manual

4: kd — Integer Input
On entry: the number of superdiagonals &k (and the number of subdiagonals) of the band matrix A.

Constraint: kd > 0.

5: nrhs — Integer Input
On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: nrhs > 0.

6: ab[dim| — double Input/Output
Note: the dimension, dim, of the array ab must be at least max(1, pdab x n).
On entry:
if uplo = Nag_Upper then

if order = Nag_ColMajor, a; is stored in ab[(j — 1) x pdab + kd + i — j];
if order = Nag_RowMajor, a; is stored in ab[(i — 1) x pdab + ; —i].

for max(1,j — kd) <i <j;
if uplo = Nag_Lower then

if order = Nag_ColMajor, a; is stored in ab[(j — 1) x pdab +i — j];
if order = Nag_RowMajor, a; is stored in ab[(i — 1) x pdab + kd +j — i].

for j < i < min(n,j + kd),
where pdab > kd + 1 is the stride separating diagonal matrix elements in the array ab.
See Section 8 below for further details.

On exit: if fail.code = NE_NOERROR or NE_RCOND, the factor U or L from the Cholesky
factorization A = U U or A = LL", in the same storage format as A.

7: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix 4 in the array ab.

Constraint: pdab > kd + 1.

8: b[dim| — double Input/Output
Note: the dimension, dim, of the array b must be at least

max(1, pdb x nrhs) when order = Nag_ColMajor;
max(1,pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i,j)th element of the matrix B is stored in b[(j — 1) x pdb + i — 1].
If order = Nag_RowMajor, the (i,j)th element of the matrix B is stored in b[(i — 1) x pdb +; — 1].
On entry: the n by r matrix of right-hand sides B.

On exit: if fail.code = NE_NOERROR or NE_RCOND, the n by r solution matrix X.

9: pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.
Constraints:

if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).

f04bfe.2 [NP3660/8]

4 -

10:

11:

12:

6

Simultaneous Linear Equations f04bfc

rcond — double * Output
On exit: if fail.code = NE_NOERROR or NE_RCOND, an estimate of the reciprocal of the

condition number of the matrix 4, computed as rcond = 1/ <||AH1HA71 H1>

errbnd — double * Output
On exit: if fail.code = NE_NOERROR or NE_RCOND, an estimate of the forward error bound

for a computed solution X, such that ||x — x||,/||x[|; < errbnd, where % is a column of the computed
solution returned in the array b and x is the corresponding column of the exact solution X. If rcond
is less than machine precision, then errbnd is returned as unity.

fail — NagError * Input/Output
The NAG error argument (see Section 2.6 of the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, kd = (value).
Constraint: kd > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

NE_INT 2

On entry,pdab = (value), kd = (value).Constraint: pdab > kd + 1.
On entry,pdb = (value), n = (value).Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_POS_DEF

The principal minor of order (value) of the matrix 4 is not positive-definite. The factorization has
not been completed and the solution could not be computed.

[NP3660/8] 04bfe.3

f04bfc NAG C Library Manual

NE_RCOND

A solution has been computed, but rcond is less than machine precision so that the matrix 4 is
numerically singular.

7 Accuracy

The computed solution for a single right-hand side, X, satisfies an equation of the form

(A+E)x=0b,
where
IE]l, = O(e)| 4],

and ¢ is the machine precision. An approximate error bound for the computed solution is given by

X—x E

B <
where k(4) = HA_1 ||, 114l the condition number of 4 with respect to the solution of the linear equations.
nag_real_sym_posdef band lin_solve (f04bfc) uses the approximation ||E||, = €||4||, to estimate errbnd.

See Section 4.4 of Anderson et al. (1999) for further details.

8 Further Comments

The band storage schemes for the array ab are identical to the storage schemesfor symmetric and
Hermitian band matrices in Chapter f07. See Section 3.3.3 in the f07 Chapter Introduction for details of
the storage schemes and an illustrated example.

If uplo = Nag_Upper then the elements of the stored upper triangular part of 4 are overwritten by the
corresponding elements of the upper triangular matrix U. Similarly, if uplo = Nag_Lower then the
elements of the stored lower triangular part of 4 are overwritten by the corresponding elements of the
lower triangular matrix L.

Assuming that n > k, the total number of floating-point operations required to solve the equations AX = B

is approximately n(k + 1)2 for the factorization and 4nkr for the solution following the factorization. The
condition number estimation typically requires between four and five solves and never more than eleven
solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogue of nag_real sym posdef band lin_solve (f04bfc) is
nag_herm_posdef band lin_solve (f04cfc).

9 Example

To solve the equations
AX =B,

where A4 is the symmetric positive-definite band matrix

549 2.68 0 0 22.09 5.10

A— 2.68 5.63 —2.39 0 and B — 9.31 30.81
0 —-239 260 -222 —524 2582

0 0 —-222 5.17 11.83 22.90

An estimate of the condition number of 4 and an approximate error bound for the computed solutions are
also printed.

f04bfe.4 [NP3660/8]

f04 — Simultaneous Linear Equations

9.1 Program Text

/* nag_real_sym_posdef_band_lin_solve (f04bfc)
*
* Copyright 2004 Numerical Algorithms Group.
*
* Mark 8, 2004.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf04.h>
#include <nagx04.h>

int main(void)

{

/* Scalars */
double errbnd, rcond;

Example Program.

Integer exit_status, i, 3Jj, kd, n, nrhs, pdab, pdb;

/* Arrays */
char nag_enum_arg[20];
double *ab=0, #*b=0;

/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_UploType uplo;

#ifdef NAG_COLUMN_MAJOR
#define AB_U(I,J) ab[(J-1)*pdab + kd + I - JI
#define AB_L(I,J) ab[(J-1)*pdab + I - J]

#define B(I,J) b[(J-1)%pdb + I - 1]

order = Nag_ColMajor;
#else
#define AB_U(I,J) ab[(I-1)*pdab + J - I]
#define AB_L(I,J) ab[(I-1)*pdab + kd + J - I]
#define B(I,J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

exit_status = 0;

INIT_FAIL(fail);

Vprintf ("nag_real_sym_posdef_band_lin_solve
" Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*[*\n] ");

Vscanf ("%$1d%1d%1d%s*["\n] ", &n, &kd, &nrhs);
if (n>0 && kd >0 && nrhs >0)
{
/* Allocate memory */
if (!(ab = NAG_ALLOC((kd+1l)*n, double))
! (b = NAG_ALLOC (n*nrhs, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

¥

pdab = kd+1;
#ifdef NAG_COLUMN_MAJOR

pdb = n;
#else
pdb = nrhs;
#endif
}
else
{

[NP3660/8]

(f04bfc)"

f04bfc

f04bfc.5

f04bfc NAG C Library Manual

Vprintf ("ss\n", "One or more of n, kd and nrhs is too small");
exit_status = 1;
return exit_status;

}

/* Read uplo storage name for the matrix A and convert to value. */
Vscanf ("%$s%*[*\n] ", nag_enum_arg);

/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value

*/
uplo = (Nag_UploType)nag_enum_name_to_value(nag_enum_arg) ;
if (uplo == Nag_Upper)
{
for (l = 1; 1 <= n; ++i)
{
for (j = i; j <= MIN(n,i + kd); ++j)
{
Vscanf ("$1f", &AB_U(i,3));
}
Vscanf ("s*[*\n] ");
¥
}
else
{
for (i = 1; i <= n; ++1)
{
for (j = MAX(1l,i - kd); j <= 1i; ++3)
{
Vscanf ("s1f", &AB_L(i,j));
}
Vscanf ("s*["\n] ");
}
}

/* Read B from data file x/
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)
{
Vscanf ("$1f", &B(i,3j));
3
3
Vscanf ("s*x[*\n] ");

/* Solve the equations AX = B for X x/
/* nag_real_sym_posdef_band_lin_solve (f04bfc).
* Computes the solution and error-bound to a real symmetric
* positive-definite banded system of linear equations
*
/
nag_real_sym_posdef_band_lin_solve(order, uplo, n, kd, nrhs, ab, pdab,
b, pdb, &rcond, &errbnd, &fail);
if (fail.code == NE_NOERROR)

{

/* Print solution, estimate of condition number and approximate =*/
/* error bound */

/* nag_gen_real _mat_print (x0O4cac).
* Print real general matrix (easy-to-use)
*/
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
n, nrhs, b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_real_mat_print (xO4cac).\n%s\n",
fail.message);
exit_status = 1;
goto END;

f04bfe.6 [NP3660/8]

f04 — Simultaneous Linear Equations

¥

nn
4

Vprintf ("\n%s\n%6s%9.le\n\n", "Estimate of condition number",
1.0/rcond) ;

Vprintf ("\n%s\n%6s%9.le\n\n",
"Estimate of error bound for computed solutions",
errbnd) ;

else if (fail.code == NE_RCOND)
{

/* Matrix A is numerically singular. Print estimate of */
/* reciprocal of condition number and solution */

Vprintf ("\n%s\n%6s%9.le\n\n\n",
"Estimate of reciprocal of condition number", "", rcond);
/* nag_gen_real_mat_print (x04cac), see above. */
nag_gen_real_mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
n, nrhs, b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_real_mat_print (xO4cac).\n%s\n",
fail.message);

exit_status = 1;
goto END;
¥
}
else if (fail.code == NE_POS_DEF)

{

/* The matrix A is not positive definite to working precision =*/
Vprintf ("$s%31d%s\n\n", "The leading minor of order ",
fail.errnum, " is not positive definite");
}
END:
if (ab) NAG_FREE (ab) ;
if (b) NAG_FREE (b);

return exit_status;

}

#undef AB
#undef B

9.2 Program Data

nag_real_sym posdef_band_lin solve (f04bfc) Example Program Data

4 1 2 :Values of n, kd and nrhs
Nag_Upper :Name of uplo
5.49 2.68
5.63 -2.39
2.60 =2.22
5.17 :End of matrix A

22.09 5.10
9.31 30.81
-5.24 -25.82
11.83 22.90 :End of matrix B
9.3 Program Results

nag_real_sym posdef_band_lin_solve (f04bfc) Example Program Results
Solution

1 2
1 5.0000 -2.0000

[NP3660/8]

f04bfc

f04bfc.7

f04bfc NAG C Library Manual

2 -2.0000 6.0000
3 -3.0000 -1.0000
4 1.0000 4.0000

Estimate of condition number
7.4e+01

Estimate of error bound for computed solutions
8.2e-15

f04bfe.8 (last) [NP3660/8]

	f04bfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	uplo
	n
	kd
	nrhs
	ab
	pdab
	b
	pdb
	rcond
	errbnd
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_POS_DEF
	NE_RCOND

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

